Enkripsi



Macam-Macam Enkripsi
Algoritma Sandi
algoritma sandi adalah algoritma yang berfungsi untuk melakukan tujuan kriptografis. Algoritma tersebut harus memiliki kekuatan untuk melakukan (dikemukakan oleh Shannon):
  • konfusi/pembingungan (confusion), dari teks terang sehingga sulit untuk direkonstruksikan secara langsung tanpa menggunakan algoritma dekripsinya
  • difusi/peleburan (difusion), dari teks terang sehingga karakteristik dari teks terang tersebut hilang.
sehingga dapat digunakan untuk mengamankan informasi. Pada implementasinya sebuah algoritmas sandi harus memperhatikan kualitas layanan/Quality of Service atau QoS dari keseluruhan sistem dimana dia diimplementasikan. Algoritma sandi yang handal adalah algoritma sandi yang kekuatannya terletak pada kunci, bukan pada kerahasiaan algoritma itu sendiri. Teknik dan metode untuk menguji kehandalan algoritma sandi adalah kriptanalisa.


Dasar matematis yang mendasari proses enkripsi dan dekripsi adalah relasi antara dua himpunan yaitu yang berisi elemen teks terang / plaintext dan yang berisi elemen teks sandi/ciphertext. Enkripsi dan dekripsi merupakan fungsi transformasi antara himpunan-himpunan tersebut. Apabila elemen-elemen teks terang dinotasikan dengan P, elemen-elemen teks sandi dinotasikan dengan C, sedang untuk proses enkripsi dinotasikan dengan E, dekripsi dengan notasi D.
Enkripsi : E(P)=C    Dekripsi : D(C)=P atau D(E(P))=P

Secara umum berdasarkan kesamaan kuncinya, algoritma sandi dibedakan menjadi :
  • kunci-simetris/symetric-key, sering disebut juga algoritma sandi konvensional karena umumnya diterapkan pada algoritma sandi klasik
  • kunci-asimetris/asymetric-key
Berdasarkan arah implementasi dan pembabakan jamannya dibedakan menjadi :
Berdasarkan kerahasiaan kuncinya dibedakan menjadi :
Pada skema kunci-simetris, digunakan sebuah kunci rahasia yang sama untuk melakukan proses enkripsi dan dekripsinya. Sedangkan pada sistem kunci-asimentris digunakan sepasang kunci yang berbeda, umumnya disebut kunci publik(public key) dan kunci pribadi (private key), digunakan untuk proses enkripsi dan proses dekripsinya. Bila elemen teks terang dienkripsi dengan menggunakan kunci pribadi maka elemen teks sandi yang dihasilkannya hanya bisa didekripsikan dengan menggunakan pasangan kunci pribadinya. Begitu juga sebaliknya, jika kunci pribadi digunakan untuk proses enkripsi maka proses dekripsi harus menggunakan kunci publik pasangannya.
1.      Algoritma sandi kunci-Simetris
Skema algoritma sandi akan disebut kunci-simetris apabila untuk setiap proses enkripsi maupun dekripsi data secara keseluruhan digunakan kunci yang sama. Skema ini berdasarkan jumlah data per proses dan alur pengolahan data didalamnya dibedakan menjadi dua kelas, yaitu block-cipher dan stream-cipher.
a.       Block-Cipher
Block-cipher adalah skema algoritma sandi yang akan membagi-bagi teks terang yang akan dikirimkan dengan ukuran tertentu (disebut blok) dengan panjang t, dan setiap blok dienkripsi dengan menggunakan kunci yang sama. Pada umumnya, block-cipher memproses teks terang dengan blok yang relatif panjang lebih dari 64 bit, untuk mempersulit penggunaan pola-pola serangan yang ada untuk membongkar kunci. Untuk menambah kehandalan model algoritma sandi ini, dikembangkan pula beberapa tipe proses enkripsi, yaitu :
·           ECB, Electronic Code Book
·           CBC, Cipher Block Chaining
·           OFB, Output Feed Back
·           CFB, Cipher Feed Back
b.      Stream-Cipher
Stream-cipher adalah algoritma sandi yang mengenkripsi data persatuan data, seperti bit, byte, nible atau per lima bit(saat data yang di enkripsi berupa data Boudout). Setiap mengenkripsi satu satuan data digunakan kunci yang merupakan hasil pembangkitan dari kunci sebelum.

Algoritma-algoritma sandi kunci-simetris
Beberapa contoh algoritma yang menggunakan kunci-simetris:
·           DES - Data Encryption Standard
·           blowfish
·           twofish
·           MARS
·           IDEA
·           3DES - DES diaplikasikan 3 kali
2.      Algoritma Sandi Kunci-Asimetris
Skema ini adalah algoritma yang menggunakan kunci yang berbeda untuk proses enkripsi dan dekripsinya. Skema ini disebut juga sebagai sistem kriptografi kunci publik karena kunci untuk enkripsi dibuat untuk diketahui oleh umum (public-key) atau dapat diketahui siapa saja, tapi untuk proses dekripsinya hanya dapat dilakukan oleh yang berwenang yang memiliki kunci rahasia untuk mendekripsinya, disebut private-key. Dapat dianalogikan seperti kotak pos yang hanya dapat dibuka oleh tukang pos yang memiliki kunci tapi setiap orang dapat memasukkan surat ke dalam kotak tersebut. Keuntungan algoritma model ini, untuk berkorespondensi secara rahasia dengan banyak pihak tidak diperlukan kunci rahasia sebanyak jumlah pihak tersebut, cukup membuat dua buah kunci, yaitu kunci publik bagi para korensponden untuk mengenkripsi pesan, dan kunci privat untuk mendekripsi pesan. Berbeda dengan skema kunci-simetris, jumlah kunci yang dibuat adalah sebanyak jumlah pihak yang diajak berkorespondensi.















Fungsi Enkripsi dan Dekripsi Algoritma Sandi Kunci-Asimetris
Algoritma -Algoritma Sandi Kunci-Asimetris
·         Knapsack
·         RSA - Rivert-Shamir-Adelman
·         Diffie-Hellman
3.      Fungsi Hash Kriptografis
Fungsi hash Kriptografis adalah fungsi hash yang memiliki beberapa sifat keamanan tambahan sehingga dapat dipakai untuk tujuan keamanan data. Umumnya digunakan untuk keperluan autentikasi dan integritas data. Fungsi hash adalah fungsi yang secara efisien mengubah string input dengan panjang berhingga menjadi string output dengan panjang tetap yang disebut nilai hash.
Fungsi Hash sering disebut dengan funsi satu arah (one-way function), message digest, fingerprint, fungsi kompresi dan message authentication code (MAC), merupakan suatu fungsi matematika yang mengambil masukan panjang variabel dan mengubahnya ke dalam urutan biner dengan panjang yang tetap. Fungsi Hash biasanya diperlukan bila ingin membuat sidik jari dari suatu pesan. Sidik jari pada pesan merupakan suatu tanda bahwa pesan tersebut benar-benar berasal dari orang-orang yang diinginkan.
Sifat-Sifat Fungsi Hash Kriptografi
·         Tahan preimej (Preimage resistant): bila diketahui nilai hash h maka sulit (secara komputasi tidak layak) untuk mendapatkan m dimana h = hash(m).
·         Tahan preimej kedua (Second preimage resistant): bila diketahui input m1 maka sulit mencari input m2 (tidak sama dengan m1) yang menyebabkan hash(m1) = hash(m2).
·         Tahan tumbukan (Collision-resistant): sulit mencari dua input berbeda m1 dan m2 yang menyebabkan hash(m1) = hash(m2)
Contoh Algoritma has
Kini akan dibahas mengenai keutuhan pesan saat dikirimkan. Bagaimana jika Anto mengirimkan surat pembayaran kepada Badu sebesar 1 juta rupiah, namun di tengah jalan Maman (yang ternyata berhasil membobol sandi entah dengan cara apa) membubuhkan angka 0 lagi dibelakangnya sehingga menjadi 10 juta rupiah? Di mata Tari, pesan tersebut harus utuh, tidak diubah-ubah oleh siapapun, bahkan bukan hanya oleh Maman, namun juga termasuk oleh Anto, Badu dan gangguan pada transmisi pesan (noise). Hal ini dapat dilakukan dengan fungsi hash satu arah (one-way hash function), yang terkadang disebut sidik jari (fingerprint), hash, message integrity check, atau manipulation detection code.

Saat Anto hendak mengirimkan pesannya, dia harus membuat sidik jari dari pesan yang akan dikirim untuk Badu. Pesan (yang besarnya dapat bervariasi) yang akan di-hash disebut pre-image, sedangkan outputnya yang memiliki ukurannya tetap, disebut hash-value (nilai hash). Kemudian, melalui saluran komunikasi yang aman, dia mengirimkan sidik jarinya kepada Badu. Setelah Badu menerima pesan si Anto – tidak peduli lewat saluran komunikasi yang mana Badu kemudian juga membuat sidik jari dari pesan yang telah diterimanya dari Anto. Kemudian Badu membandingkan sidik jari yang dibuatnya dengan sidik jari yang diterimanya dari Anto. Jika kedua sidik jari itu identik, maka Badu dapat yakin bahwa pesan itu utuh tidak diubah-ubah sejak dibuatkan sidik jari yang diterima Badu. Jika pesan pembayaran 1 juta rupiah itu diubah menjadi 10 juta rupiah, tentunya akan menghasilkan nilai hash yang berbeda.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhgc1eHo8UwhFawdgofEQLHNu_e7pScrBolgcjkohjA7qLQhH8xqpXWHWrJi0bH6GitqPvFbJMGs5dsRhCH4VQucNsi6Nm5KWpRu3IIZnsiMB437uhOhsGmVcIZ_YY9k5MjvZkO0snYK5o/s1600/hash.JPG

Fungsi hash untuk membuat sidik jari tersebut dapat diketahui oleh siapapun, tak terkecuali, sehingga siapapun dapat memeriksa keutuhan dokumen atau pesan tertentu. Tak ada algoritma rahasia dan umumnya tak ada pula kunci rahasia.
Jaminan dari keamanan sidik jari berangkat dari kenyataan bahwa hampir tidak ada dua pre-image yang memiliki hash-value yang sama. Inilah yang disebut dengan sifat collision free dari suatu fungsi hash yang baik. Selain itu, sangat sulit untuk membuat suatu pre-image jika hanya diketahui hash-valuenya saja.
Contoh algoritma fungsi hash satu arah adalah MD-5 dan SHA. Message authentication code (MAC) adalah salah satu variasi dari fungsi hash satu arah, hanya saja selain pre-image, sebuah kunci rahasia juga menjadi input bagi fungsi MAC.

Algoritma-Algoritma Fungsi Hash Kriptografi
Beberapa contoh algoritma fungsi hash Kriptografi:
·         MD4
·         MD5
·         SHA-0
·         SHA-1
·         SHA-256
·         SHA-512

1 komentar

Unknown 15 Desember 2017 pukul 10.01

Informasinya sangat bermanfaat Terima Kasih...My blog

Posting Komentar